Sectional Curvature in Riemannian Manifolds
نویسندگان
چکیده
منابع مشابه
Riemannian Manifolds with Positive Sectional Curvature
It is fair to say that Riemannian geometry started with Gauss’s famous ”Disquisitiones generales” from 1827 in which one finds a rigorous discussion of what we now call the Gauss curvature of a surface. Much has been written about the importance and influence of this paper, see in particular the article [Do] by P.Dombrowski for a careful discussion of its contents and influence during that time...
متن کاملExamples of Riemannian Manifolds with Non-negative Sectional Curvature
Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...
متن کاملSturm-Liouville operator controlled by sectional curvature on Riemannian manifolds
The purpose of this paper is fourfold: (1) to introduce and study a second order PDE, determined accidentally by a Riemann wave, reflecting the connection between oriented parallelograms area and sectional curvature on Riemannian manifolds; (2) to introduce and study the asymptotic behavior of oriented parallelograms area controlled by the sectional curvature; (3) to study some partial differen...
متن کاملCurvature Flows in Semi-riemannian Manifolds
We prove that the limit hypersurfaces of converging curvature flows are stable, if the initial velocity has a weak sign, and give a survey of the existence and regularity results.
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Mathematica Journal
سال: 2020
ISSN: 1097-1610
DOI: 10.3888/tmj.22-1